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~1958

Global Semiconductor Sales1 ($B)

~ 60 years

1985 1990 1995 2000 2005 2010 2015 2020 2025E 2030E

~ 8-9 years

Sharp Acceleration in Semiconductor Demand

555.892514

Great 
Recession

Dotcom 
Bubble

COVID

$1T+

~$0.5T

1. Sources: SIA/WSTS (historicals); forecasts based on Gartner, TechInsights, IBS, SIA/WSTS and consensus analyst forecasts for leading semiconductor companies 
2. Sources: Gartner, AMD, Nvidia, Intel, Goldman Sachs 

Web
~6% 

CAGR

Mobile 
~4%

CAGR

PC
~18% 

CAGR

~10% 
CAGR

Pervasive
Intelligence

IOT & 
Cloud 

~6% 
CAGR

Explosion in 
demand for 

AI chips2

Up to 

$400B
in 2027
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Great Time for Chip Industry

US $53 billion 
CHIPS Act 
signed in 2022

Japan $13 billion to 
support chip industry
announced in 2023

EU $47 billion 
European Chips Act 
Approved in 2023

India $15 billion to
build local chip plants
approved in 2024 

Vietnam to roll out 
chip incentive policy 
by mid-2024

China Big Fund
Phase I $22 billion 2014
Phase II $29 billion 2019
Phase III $48 billion 2024

VC-backed Chip Startups Closed 175 Deals, Raised $5.3 Billion in 2024 1H 
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Transistors are NOT getting more efficient, Pushing the Limits of Chip Design
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NEC µCOM-4
RCA 1802

Zilog Z80
Zilog Z8000

Motorola 6809

Intel 8051

Motorola 68000
Motorola 68030

TMX 1795
Intel 8080

Intel i960CA

R4000

Intel i960CF

Pentium

MP944

ARM 2
ARM 6

AVR

Motorola 68060
AMD K5 Alpha 21164PC PCA57

Hitachi SH-4

Alpha 21164 EV5 ADM K7

Pentium II Mobile Dixon Pentium 4 Northwood

ADM K8
Xenon

Core 2 Duo Wolfdale
SPARC64 VII

SPARC T3
Quad-core + GPU AMD Trinity

HiSilicon Kirin 960 TI Jacinto TDA4VM

IBM z15 CP chip

Dimensity 920

Apple M2

Apple M2 Max

SPARC M7
Qualcomm Snapdragon 865

Source: Wikipedia – Transistor Count: https://interludeone.com/posts/2021-04-21-chips/chips_files/figure-html/unnamed-chunk-4-1.png

Moore’s Law
The number of transistor 
on integrated circuit chips 
(1971–2020) Exponential Chip 

Complexity
Exponential Chip 

Complexity
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Newer Models Further Pushing Limits of Compute

Source: https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

Context-Aware Transformer 
Models Come at a Price

All Models Excluding Transformers:

8X / 2 years

Transformer AI Models:

275X / 2 years

Exponential 
Transformer Models

Exponential 
Transformer Models
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Systems companies
re-architecting products, 

business models and 
development processes

Systems companies
re-architecting products, 

business models and 
development processes

Driving demand for massive 
compute, both at the edge

and the data center 

Driving demand for massive 
compute, both at the edge

and the data center 

Autonomy and 
software-defined systems 

reshaping industries

Autonomy and 
software-defined systems 

reshaping industries

Increasing Silicon and Software Content In Systems Products
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Systems R&D Processes Are More Complex, More Costly

Source: “Semiconductors – the Next Wave”, April 2019, Deloitte Report
1. Cost contribution of automotive electronics and semiconductor content per car

TODAYYESTERDAY

Increasing
cost of

electronics

Increasing
cost of

electronics

…increasing by ~2.5x…increasing by ~2.5x

45% 

2030

% of electronics in the cost of a new car1…% of electronics in the cost of a new car1…

18% 

2000

New
design

flows

New
design

flows

Sequential design flows…Sequential design flows… …are now continuous…are now continuous

Silicon Hardware Product
in-fieldTestSoftware

Hardware

Software

Silicon

Product 
In-field

Test
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AI Driving Unprecedented Power Consumption

Software to Device Solution Needed to Address the Magnitude of Power Consumption

AI Energy Consumption by 2030

nVIDIA H100 GPU

ChatGPT request vs Google search

Source:  RISE Research Institutes of Sweden, Oct 2023

Source: The Brussels Times Newsroom May 2024

Source:  Schneider Electric,  December 2023 * Thermal Design Power

Source:  Schneider Electric,  December 2023

AI Data Center Power Consumption (GW) 

4.5

18.7

2023 2028
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Huge Amount of  Water Usage is Also UNSUSTAINABLE

Frontier (#1 most powerful 
supercomputer) liquid-cooled

Google’s Global Data Center in 
2021 Water Usage

Innovative Cooling Solutions Needed to Address the Unsustainability of Water Usage

Source:  Google, 2022

Source:  Bloomberg, 2023

Current Cooling Solutions  
room-temperature liquid colling

• HPC environments moving from 
hybrid air-liquid cooling to just 
liquid cooling @ higher flow rates

• This solution will not be enough to 
maintain system temperature and 
functionality 

• Due to expensive packaging for 
high power dissipation capabilities
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The era of

PERVASIVE INTELLIGENCE
Artificial 

Intelligence

Exponential productivity 
and efficiency gains

Silicon 
Proliferation

More silicon content 
everywhere

Software-Defined 
Systems

New applications, 
new methodologies

Silicon to Systems Design Solutions

New design paradigm; Solving Energy challenges while addressing complexity
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Emerging Technologies 
Addressing the Challenges in the Era of 

Pervasive Intelligence

The need for custom silicon 
and the growing complexity 

of chip design
Growing at the intersection of 

hardware and software
Enhance compute power 

and be sustainable

© 2024 Synopsys, Inc. 13



Silicon Complexity
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‘SysMoore’

Meeting Explosive Compute Demand Requires New Paradigm

System 
LifecycleDesignDesign ManufacturingManufacturing OperationOperation

Silicon
Lifecycle

Management

Optimization of in-field 
chip performance for 

specific workload and 
operational conditions

New transistor architectures, 
materials, manufacturing tech

+

System 
of Devices

Fit-for-purpose chips developed 
together with the HW and the

SW for the specific domain

Domain
Specific

Architectures
System

(device)

PCB
Package

Chip
(SoC)

Dies 
(chiplets)

System
Stack

Heterogeneous 
chiplets integrated 

into 3D/2.5 packages

Multi-die
Chips

In-Design

In-Ramp

In-Production

In-Field

Moore’s
Law

Classic approach
based on 

physical scaling
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Heterogeneous Systems Design Challenges

Synopsys Confidential Information
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Early Architecture Exploration For Multi-Die Systems
Partitioning & Optimization to Accelerate Architecture Realization with Platform Architect

Separate system into its functions, 
scale functions across multiple dies

Meet scaling, fabrication, and 
functionality requirements

PARTITION
INTO DIES/CHIPLETS

GPU AI …CPU
32

CPU
64

Scalable Design Space
Exploration

ACCELERATE
ARCHITECTURE REALIZATION

Enable silicon, package and software 
teams with multi-die system analysis

Leverage die-on-die and die-to-die 
IP models

OPTIMIZE
MULTI-DIE SYSTEM

Optimize for bandwidth density, 
energy per bit, cost and latency

Select chip-to-chip protocols and 
interfaces: UCIe, PCIe, CXL, …

Model-Based Architectural
Exploration of Multi-die Systems



Silicon & System Intersection
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Electronics Electro-Mechanical

“Classic”
Chips

Silicon

Others
Advanced 
Computing

Silicon

Hardware

Software

High-Tech Automotive Aerospace

Semiconductor Companies Systems Companies

Industrial 
Equipment
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SYSTEMS SPECTRUM

ELECTRONIC

Silicon

Hardware

Software

ELECTRONIC

Silicon

Hardware

Software

ELECTRONIC

Silicon

Hardware

Software

ELECTRONIC

MECHANICAL

ELECTRIC
ELECTRIC

MECHANICAL

ELECTRIC

MECHANICAL

ELECTRIC

MECHANICAL

ELECTRIC

MECHANICAL

ELECTRONIC ELECTRONIC

Silicon

Hardware

Software

ELECTRONIC

Embedded 
control

Silicon to Systems Transition Ongoing Across Verticals
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Products Are Becoming SW Platforms In Every Industry

Source: Automotive Software and Electronics 2030 (McKinsey, Jul 2019); Levers to Unleash Value (Volkswagen, Jan 2020); Computer on Wheels (Roland Berger, Q1 2020)

Automotive Software
Market

2030
~$84B

2020
~$34B

~2.5x

Lines of Code 
per Vehicle
Lines of Code 
per Vehicle

L5 ADAS
~1,000M

Today
100M

~10x

Silicon & Software
Development 
Costs

Silicon & Software
Development 
Costs

5nm
~$550M

16nm
~$100M

~4x

Software as 
% of Chip 
Development

Software as 
% of Chip 
Development

~30-40%

Driving Experience Digital Platform

Y E S T E R D AY T O D AY

Example: Automotive
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Digital Twin
A dynamic virtual model of a physical product 

Digital Twins Will Revolutionize CAE for Product Development

Reduce cost of 
product design and 
testing

by eliminating 
physical field test

Reduce cost of 
product design and 
testing

by eliminating 
physical field test

-30%

Accelerate product 
time to market

by testing features 
before production

Accelerate product 
time to market

by testing features 
before production

+50%

Improve product 
quality (HW/SW)

by testing HW + SW 
before production

Improve product 
quality (HW/SW)

by testing HW + SW 
before production

+25%

Source: Digital twins: The Art of the Possible in Product Development and Beyond (McKinsey, Apr 2022)
1. Percentage increases represent a comparison between without and with digital twin

Expected Customer Benefits1

Increase revenue 
growth & 
contribution margin

by reducing costs of 
physical field testing

Increase revenue 
growth & 
contribution margin

by reducing costs of 
physical field testing

~5-10%
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Foundational EDAFoundational EDA ZeBu® & HAPS ®ZeBu® & HAPS ®

Virtual model of chip / ECUVirtual model of chip / ECU VIRTUALIZER
TM

VIRTUALIZER
TM

Software development &
test automation
Software development &
test automation

Virtual model of productVirtual model of product

Virtual model of product in environmentVirtual model of product in environment
Product Operating
in Environment
Product Operating
in Environment

Virtual ProductVirtual Product

Software in 
Electronics
Software in 
Electronics

VirtualizationVirtualization

Hardware Assisted
Verification
Hardware Assisted
Verification

Building the Most 
Comprehensive 
Digital Twin

Building the Most 
Comprehensive 
Digital Twin

Building the Most 
Comprehensive 
Digital Twin

INDUSTRY
LEADER

INDUSTRY
LEADER

20232005

1

Most Comprehensive System Virtualization Solution Portfolio
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Margin
Optimization

Yield
Optimization

Silicon
Insights

Predictive 
Maintenance &

in-field Optimization

Data Store

…Including Silicon Lifecycle Management Innovation

Monitoring and optimization of relevant chip metrics across lifecycle stagesMonitoring and optimization of relevant chip metrics across lifecycle stages

In-Chip
Monitors

Design AnalyticsDesign Analytics In-Field AnalyticsIn-Field AnalyticsManufacturing AnalyticsManufacturing Analytics

In-Design In-Ramp In-Production In-Field

S i l i co n  L i fec yc le  Man ag e men t
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Holistic Silicon to Systems Design Solutions

Silicon

HW 
Requirements

System 
Requirements

Digital Twin of Silicon

Software Development

Software

SW
Requirements

Completed 
System

Drive

ZeBu® HAPS®Synopsys Cloud Synopsys.ai

Silver Virtualizer

Platform 
Architect

Addressing complexity and accelerating systems design cycles

Software

Silicon

Synopsys

Partner

Customer

Fusion Compiler , PrimeTime®, etc. 

Silicon & System Productivity Solutions
Silicon

Architecture

Silicon IP, Design & Verification Manufacturing

Sentaurus
Fab.da
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Next-Generation Product Development with Digital Twins 

Digitized
Requirements

Digital Twin of 
“World”

Digital Twin of 
“Physical 
Product”

Digital Twin of
Electronics

Digital Twin of
Multi-physics

Verification & Validation
Environment

HiL = Hardware in the Loop
ViL = Vehicle in the Loop

Dynamic Models
Sensor models

E/E archtecture models
Chassis models

Powertrain models
Domain models

External Requirements
Industry Regulations

Internal Requirements

Static world models
Dynamic world models
Environment models

Occupant models

Cloud-based
Simulation & 

Emulation

HiL & ViL

Field Test/
Proving Ground

Product 
Certification

Real world Product under development



Compute & Energy Limits
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Shift-Left Is a Must for Low Power and Energy Efficiency
Bigger opportunity for power savings at earlier design stages
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T
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L

DESIGN 
STAGE

HIGH

SW and HW Arch RTL ECO and 
Signoff

30-50%+

15-30%

10-15%
5-10%

Synthesis and 
Implementation

Arch tradeoffs and 
IP selection

Power profiling of 
SW workloads

Find and fix power 
consumption bugs

Develop power-
efficient RTL

Automatic power 
optimization

Power-aware 
ATPG

Power recovery 
with surgical ECO 

optimizations

Power signoff

Shift 
Left
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LLM
(Large Language Model)

Example

Model Size

Definition

Application

SLM
(Small Language Model)

A language model with a very large number 
of parameters and high complexity.

Energy 
Consumption

A language model with fewer parameters 
and less complexity.

Llama 3 8B, phi-3, Mistral, Gemma GPT-4

e.g., Llama 3 8B, 8 billion parametersGPT-4 around 1.76 trillion parameters 

Specific tasks and environments, requiring 
much lesser reasoning and creation, like 
coding, translation, summarization, etc.

Lower energy consumption due to simpler 
computations and smaller model size.

Higher energy consumption due to 
extensive computational requirements and 
large-scale infrastructure.

Ideal for complex applications requiring 
deep language understanding, generation, 
and high performance.

SLMs a Potential Paradigm Shift in the AI Landscape
LLMs remain for a broader applications, SLMs offer for specialized solutions
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Neuromorphic Computing: Supercharged but Energy Efficient 

Operation

Architecture

Communication

Programming

Timing

Sequential / Limited Parallel 
processing

Separated computation 
and memory

Code as binary instructions

Binary data

Synchronous 
(Clock-driven)

Massively parallel processing 

Collocated processing 
and memory

Spiking neural network

Spikes

Asynchronous 
(Event-driven)

20 Megawatts
(10 exa-FLOPS) 

Energy Human Brain 20 Watts
(10 exa-FLOPS) 
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Recent Advances Put Neuromorphic Computing within Reach

$2.8

$12.7

$1.5

$7.4

$4.3

$20.1

2022 2030

Neuromorphic Computing Market (USD B)

Hardware Software & Services Total

21%

Source: Polaris Markets

 Key Movers’ Efforts
- Intel has built the world’s largest neuromorphic system Hala Point (2024), and utilizes 
Intel's Loihi 2 processor, which is made using the Intel 4 process and has 128 cores 
per chip. Each chip includes up to 1 million digital neurons and 120 million synapses.

- IBM's TrueNorth chip has over 1 million neurons and over 256 million synapses. 
NorthPole (2023) is the next generation of TrueNorth at 12nm

 Great Promise to Several Application
Image processing, data processing, and object detection will grow by over 20% CAGR 
from 2022 to 2030, and penetrate many end markets, such as industrial IoT, 
automotive, AR/XR, security and surveillance.

 Academic Achievements
Carver Mead’s pioneering work laid the foundation for brain-inspired systems by 
demonstrating how silicon circuits could mimic neurobiological processes. Carried 
forward by his student Professor Kwabena Boahen.

 Scientific Progress
There are surging neuromorphic patents. 899 patents were granted in 2023. Technical 
papers significant increased, 8,104 papers were published in 2023.

 Government Funding & Project
DARPA SyNAPSE project and the EU Human Brain Project
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Computing using Spiking 
Neural Networks (SNN)

• Training challenges due to limited back propagation
• Inefficiency in encoding spikes
• Scaling difficult (asynchronous or analog 

implementation)

> 5 Years

A
LG

O
R
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H

EM

Neuromorphic Computing Four-Segment Development

C
O

M
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U
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M
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M
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Y

Key Challenges Estimated Time to 
Tech Readiness

Key Technologies

Neuromorphic sensors

In-sensor computing

• Ideal implementation is analog and mixed signal 
or asynchronous digital designs – challenging to 
implement at scale

< 3 Years

• One-bit to multiple
• Shrink down to lower node
• High voltage to write

• Retention failures due to an 
inherent thermal instability

• Manufacturing challenge

3-5 Years

• Ideal implementation is analog and mixed 
signal with SNN

• Data Communication bottlenecks
Neuromorphic Electronics > 5 Years

MRAM

FeFET • Short data retention time 

ReRAM

>5 Years

S
E
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S
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G
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Carver Mead 
introduced the 

term 
“neuromorphic”

1982

Emerging Memory: The Key to Neuromorphic Computing

Emerging 
Memory

- Leading 
process node 
support below 
10nm

- Large Array 
product Tape 
out success

- Multi-bit 
support in 
memory array

Number of Patent
Neuromorphic

Sensing
- AR/VR headset 
companies' adoption
- IMC for analog 
implementation 
(ideal) 

Sensing
- AR/VR headset 
companies' adoption
- IMC for analog 
implementation 
(ideal) 

Algorithms
- SNN showing 
progress beyond 
current MNIST 
dataset 
identification
- IMC at scale

Computing
- Maturity of 3D IC
- Maturity of SNN
- IMC at scale

Triggers

Early Theoretical 
Foundations

Carver Mead 
published 

“Analog VLSI 
and Neural 
Systems”

1990

Development of 
Neuromorphic Chip

IBM began exploring 
neuromorphic computing

2004

European FACETS project 
(Fast Analog Computing with 
Emergent Transient States)

2008

IBM 
TrueNorth

Chip
2011

Europe HBP 
(The Human 

Brain Project)
2014

Intel
Loihi Chip

2015

Intel Loihi 2
& Lava software 

framework
2020

Collaborative Research 
& Applications

Integration with 
AI/ML

Beijing explored for applications 
in robotics, edge computing, AI 
and brain-computer interfaces

Apple?
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Quantum Leap: Beyond Classical Computing

Source: MIT, Qubit Counter

“Quantum computers rely 
on encoding information in 
a fundamentally different 
way than classical 
computers.”

–William Oliver,  Director, 
MIT Center for Quantum 
Engineering | Professor, 
MIT EECS
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Quantum Computing Development Accelerating

$39B Total Government 
Investment Announced

$620B-$1.2T
Potential Market Value 

from Quantum Computing
by 2040

Optimization

Machine 
Learning

$138B-$329B

$270B-$329B

Simulation
$220B-$493B

Cryptography
$55B-$120B

 Technological Breakthroughs
IBM unveiled the 1,121 qubits and updated its road map to 
develop a 4,000+ qubit processor in 2025

 Scientific Progress
There are surging quantum patents. 16,731 patents were 
granted in 2023. Quantum papers flat, 111K papers were 
published in 2023. The papers focus on Quantum Design 
Automation are on the rise

 Increasing Investment Flows
More than $5B invested in Quantum Computing by VCs since 
2019, equals to above 85% of all VC investments

 Abundant Government Funding
Governments funding is a major force driving R&D efforts. US 
has already committed $3.8 billion

 Hyperscalers and Large Semi Companies  
All-In on Quantum Computing

Multiple billion dollars are committed by 2029

Source: McKinsey, BCG
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Triggers

Quantum Takeoff: Potential Ignition Points

NIST Post Quantum  
Encryption Standard

IIBM Condor 
1121 Qubit

1985 20001990 20051995 2010 2015 2020 2025 2030

• Usage to address substantial real-world problems

• Evident scaling of readout circuit technology, using 
either multiplexing or optical

• Profitable business model for Quantum Computing 
presented by a company or partner

• Consistent or reducing energy demand per qubit

• 10:1 error code correction ratio

• Full fault tolerant Quantum computer

• 100,000 qubit quantum computer

• First commercial application

Progress toward 
Quantum Advantage*

* Quantum advantage: refers to the demonstrated and measured success to process a real-world problem faster on a quantum computer than on a classical computer

Google Quantum 
Supremacy

IBM Hummingbird
65 Qubit

First Commercial 
Quantum Computer By 

D-wave

First Quantum 
Software Company 

(1Qbit)
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Quantum Design Automation (QDA) Stack: Navigating Complex Challenges

Key ChallengesDefinitionStack

Extensive modeling and incorporation of all relevant 
quantum effects across various operating corners

Atomistic modeling, parametric extraction, 
and simulation of quantum devices 

QDA

Scalability to large numbers of qubits due to limited 
memory

Replication of quantum behavior for testing 
and development 

Data encoding is expensive
Data encoding is also sensitive to noise

Building and optimization of quantum 
algorithms for specific tasks 

Compilation needs to be hardware aware to choose 
the implementation that minimizes faults

Translation of quantum code to run on 
specific hardware setups 

Verifying complex algorithm, such as Harrow-
Hassidim-Lloyd algorithm and the Binary Welded Tree 
quantum walk algorithm, remain difficult

Confirmation of accuracy and functionality 
of quantum algorithms and designs 

Quantum computers haven't reached the scale that 
necessitates optimized automation solutions

Creation and modification of quantum 
circuit designs 

Error correction schemes add additional overhead ,but 
are required to unlock quantum full potential

Identification and correction of noise errors 
in quantum computation processes 

Implementing Cryo/Cold CMOS at advanced nodes 
presents significant challenges
Lack of a Process Design Kit (PDK) at 22nm poses a 
constraint to scalability

Manages quantum processes using 
CMOS, FPGA, or Josephson junctions for 
precision control IP

Synthesis

Simulation
(Emulation)

Modeling

Compilation

Verification/Testing

Schematic 
Editor/Layout

Error Control

Control Circuit

Technical Hurdles



© 2024 Synopsys, Inc. 

Quantum 
Computing
Quantum 
Computing

Microfluidics/
Microarrays
Microfluidics/
Microarrays

In-memory 
Computing
In-memory 
Computing

X on FlexX on Flex

Computational 
Modeling

Computational 
Modeling

Brain 
Computing 
Interfaces

Brain 
Computing 
Interfaces

Advanced 
materials 

at nano scale

Advanced 
materials 

at nano scale

Homomorphic
Encryption

Homomorphic
Encryption

DFT/NEGFDFT/NEGF

Tiny MLTiny ML
Spatial 

Computing
Spatial 

Computing

Green 
Hydrogen

Green 
Hydrogen

GrapheneGraphene
Green 

Concrete
Green 

Concrete

AI based 
protein design

AI based 
protein design

Lithium-sulfurLithium-sulfur

Fintech
Blockchain

Fintech
Blockchain

X on SiX on Si

Neuromorphic 
Computing

Neuromorphic 
Computing

Nuclear 
Fusion

Nuclear 
Fusion

Pumped 
Hydro Storage

Pumped 
Hydro Storage

Wireless Power 
Transmission

Wireless Power 
Transmission

UltracapacitorsUltracapacitors

Perovskite 
cells

Perovskite 
cells

Single-cell 
Sequencing
Single-cell 
Sequencing

xLSTMxLSTM Vision AIVision AI

Advanced 
Manufacturing

Advanced 
Manufacturing

Satellite 
internet 

constellations

Satellite 
internet 

constellations

Stratospheric 
Balloons

Stratospheric 
Balloons

Knowledge 
Graphs

Knowledge 
Graphs

3D Printing3D Printing

Global 
Navigation 

Satellite 
Systems 

Global 
Navigation 

Satellite 
Systems 

Hyperspectral 
Imaging

Hyperspectral 
Imaging

Hypersonic 
Vehicles

Hypersonic 
Vehicles

Hyperdimensional 
Computing

Hyperdimensional 
Computing

Federated 
Learning

Federated 
Learning

Synopsys Technology Intelligence Center (TIC)

37 Emerging Technologies under 8 Categories 

Collaboration, Partnership, Investment

Novel AINovel AI

Computational 
Biology

Computational 
Biology

Future of 
Compute
Future of 
Compute

Novel 
Energy
Novel 
Energy

Advanced 
Materials
Advanced 
Materials

RoboticsRobotics

Space 
Tech

Space 
Tech




