Scaling to Meet The Needs of Al

Pradeep Dubey

Intel Senior Fellow and Director, Parallel Computing Lab

> EDPS Symposium October 4th, 2024

Two Virtuous Cycles Accelerating Al Innovations

Expanding Application Space of Al

Making AI Algorithms More Capable

Designing Better Systems for AI

Designing Better Systems with AI

Ensuring AI Stays Good

INTEL LABS - PARALLEL COMPUTING LAB

Where are we headed next ...

Making AI Algorithms More Capable: From *perception* to *reasoning*

AI Problem Statement & the GenAI Opportunity

Al Update:

• Trained on text, image, code or protein ... data, AI can now learn a model that generates a novel text, image, code or protein ... that is indistinguishable, yet original compared to the training data

→ AI's Dream Moment: AI claiming to do what human minds do every night while dreaming

- We can avoid training-from-scratch for various use cases, and instead cheaply (in cost terms) fine-tune or augment a large model down to a smaller-and-better model for a specific context.
- Al Opportunity:
 - Above two have significantly sped up the permeation of AI into various content creation and decision-making workflows, which were reluctant in adopting AI so far, simply because of economies-of-scale associated with *more machine-and-less-human-cycles* in the workflow.

Agentic Era Al From Perception To Action

- Promises:
 - Kahneman's (S2 → S1) loop
 - Learned object features \rightarrow action motifs
 - Multi-agent collaboration
 - Human-in-the-loop \rightarrow Humanoids*
- Challenges:
 - LLM models running out of training data
 - Current algorithms need revisit **
 - Safe Superintelligence?
- Generally Capable Agents in Open-Ended Worlds, Jim Fan, NVIDIA GTC'24 < link >
- ** Objective-Driven AI, Prof. Yann Lecun <<u>link</u>>

Scaling Challenges In the Agentic AI Era

- Compute flops-bandwidth requirements have gone up 100-1000x or more at the high end (pre-training) and 10-100x for the volume server and client as well.
- Easier to meet compute flops needs than feed needs
- Highest-level manifestation of limitations that could end-it-all:
 - Energy cost of sustaining AI compute needs: primarily rooted in cost of data movement
 - Developer disconnect: Growing gap of ninja-performance vs. data-scientists

INTEL LABS – PARALLEL COMPUTING LAB

Innovation Opportunities

- Compute:
 - Numerics (~1b/tensor), unstructured sparsity, compute-in/near-memory/network, dataflow
- North-South: Feed the compute
 - >10x BW than HBM at some reasonable capacity-tradeoff at iso-power
- East-West:
 - Scaling up/out: High-radix, optical networking with <10fj/b-mm vs. >100fj/b-mm today
- Software:
 - Compiled performance, self-organizing code,
 - Natural language \rightarrow SQL/plans ... (AI generated)
- Packaging-and-cooling

LLM Inferencing: Compute Intensity Challenged

Source: https://arxiv.org/pdf/2302.14017

DDR4 Typical Memory Blocks Area per Total Bandwidth ($rac{mm^2}{GB/S}$ 10¹ Bandwidth Read Energy Size (GB) Area (mm² (GB/s) (pJ/bit) DDR4 16 469.8 25.6 20 HBM2e HBM2e 24 768 307 4 10⁰ 0.2 SRAM 0.001 0.3 8 10-1 **Better TCO/Token** SRAM (7nm) 10^{-2} 10-7 10^{-5} 10^{-4} 10^{-3} 10-2 10^{-1} 10^{-6} Read Energy per Total Bandwidth $\left(\frac{p//bit}{GB/s}\right)$

TPU 1st token TPU 2nd token

INTEL CONFIDENTIAL – INTERNAL ONLY

Addressing Capacitor Limitation of DRAM *

*Gain cell: Shukuri, Kure and Nishida, IEDM 1992. P. Meinerzhagen et al. Cham, Switzerland: Springer, 2018.

H.-S. Philip Wong

6

Shuhan Liu, Stanford SystemX Alliance Ser

TABLE I

GEMTOO MEMORY MACRO SIMULATION BASED ON SIMULATED 28 nm ALD ITO FET INDICATES THAT OS-OS GC AND HGC HAVE LONG RETENTION AND HIGH FREQUENCY

28nm node, V _{DD} = 0.9V, sub-array size 64 row x 256 col.				
	SRAM[26]	Si GC# [7]	OS GC#	HGC [#]
Cell size* (µm²)	0.16	0.14	0.14/N	0.06
Refresh Period		19 µs	95-	9 s
Max Freq. (MHz)	735	242	345	721
Bandwidth (GB/s)		7.6	11	23

Simulated with GEMTOO

* SRAM -- pushed design rule; GC -- logic design rules. For OS gain cell in this work, equivalent cell size depends on 3D stacking number (N) of layers.

* Design Guidelines for Oxide Semiconductor Gain Cell Memory on a Logic Platform, Phillip Wong, et.al. , IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 5, MAY 2024

Network Scalability

Era of 'Datacenter as a Computer' is almost here

2013

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second Edition Luiz André Barroso, Jimmy Clidaras, Urs Hölzle Morgan & Claypool Publishers (2013)

Datacenter today has supercomputerclass compute ...

Image courtesy: Aurora Supercomputer, Argonne National Lab <<u>link</u>>

Animation Credit: What's next for photonics-powered data centers and AI; Nick Harris, CEO Lightmatter < link >

High Radix Networks and Photonics

- High radix, low diameter networks are technically a superior option ...
 - The more routers a packet goes through, more the latency, congestion, delay ...
 - Hop minimization should therefore be a goal: ideally 2 to 3 hops maximum
- Photonics offers a promising technology path for high-radix networks
 - Optical IO latency is determined by time-of-flight (ToF): 5 nsec/meter
 - Rack level ~10 nsec, data center with 40 meters: ~200 nsec
 - Total network latency = network hops * routing delay + ToF < 500 nsec</p>

High Radix Networks and An Open Graph Theory Problem

- Degree/diameter problem:
 - What is the order of the largest graph with a given degree and diameter?
- Moore Bound limits the number of nodes in a graph:
 - *d* is the graph degree, or *router radix*
 - *k* is the diameter, or *maximum number of hops*.

•
$$M(d,k) = \frac{((d)(d-1)^k)^{-2}}{d-2}$$

- Want to maximize nodes and minimize diameter
- It remains an open problem whether or how close one can get to the Moore bound in terms of a *constructible graph*

Moore Bound construction: degree d = 3, diameter k = 2

Moore's Bound and the Degree/Diameter Problem

- The Moore bound is $\mathcal{O}(d^k)$.
 - Thop (k = 1) can reach at most d different destinations.
 - 2 hops (k = 2) can reach at most $(d^2 + 1)$ destinations.
 - For *d*=32, the bound is 1025.
 - For d = 64, the bound is 4097.
 - For d=128, the bound is 16,385
 - 3 hops (k = 3) can reach at most $(d^3 d^2 + d + 1)$ destinations.
 - For *d*=32, the bound is 31,777.
 - For *d*=64, the bound is 258,113.
 - For *d*=128, the bound is 2,080,897

Reality Today of Low-Diameter, High-Radix Networks: 2D HyperX

Erdős-Rényi polarity graphs ...

- Discovered independently by Erdős-Rényi (1962) and by Brown (1966).
- An isomorphic construction was discovered even earlier by Singer (1938).
- ER graphs are from projective geometry over the finite field of order q.

Paul Erdős

Alfréd Rényi

William G. Brown

- If $l_0 \neq l_1$ are any two vectors, there is a vector *m* perpendicular to both.
 - (It's the cross-product.)

- If l₀ ≠ l₁ are any two vectors, there is a vector m perpendicular to both.
 (It's the cross-product.)
- What if we constructed a graph with edges expressing dot-product perpendicularity?
 - (l_0, m) and (m, l_1) are edges in the graph, so you can get from l_0 to l_1 via m.
 - So this graph has diameter **2**.

Po

 \boldsymbol{m}

- If l₀ ≠ l₁ are any two vectors, there is a vector m perpendicular to both.
 (It's the cross-product.)
- What if we constructed a graph with edges expressing dot-product perpendicularity?
 - (l_0, m) and (m, l_1) are edges in the graph, so you can get from l_0 to l_1 via m.
 - So this graph has **diameter 2**.
- Use non-0 vectors from \mathbb{F}_q^3 whose first non-0 entry is 1:
 - Fact: each is perpendicular to q+1 vectors, so degree is q+1.
 - So the diameter-2 Moore bound is $q^2 + 2q + 2$.
 - Fact: number of nodes/vectors is $q^2 + q + 1$.

- If $l_0 \neq l_1$ are any two vectors, there is a vector *m* perpendicular to both.
 - (It's the cross-product.)
- What if we constructed a graph with edges expressing dot-product perpendicularity?
 - (l_0, m) and (m, l_1) are edges in the graph, so you can get from l_0 to l_1 via m.
 - So this graph has **diameter 2**.
- Use non-0 vectors from \mathbb{F}_q^3 whose first non-0 entry is 1:
 - Fact: each is perpendicular to q+1 vectors, so degree is q+1.
 - So the diameter-2 Moore bound is $q^2 + 2q + 2$.
 - Fact: number of nodes/vectors is $q^2 + q + 1$.
- The number of nodes is pretty close to the Moore bound!

Summing up ER_q ...

- ER_q has diameter 2.
- There are $q^2 + q + 1$ nodes in ER_q .
- Each non-quadric node has degree q + 1
 - So, the graph has degree q + 1, and the Moore bound is $(q + 1)^2 + 1$.
- ER_q asymptotically approaches the Moore bound:

$$\frac{\# nodes}{Moore \ bound} = \frac{q^2 + q + 1}{(q+1)^2 + 1} \Longrightarrow 1, \text{as } q \Longrightarrow \infty$$

Can ER_q form the basis for laying out a high-radix network?

Yes ... Introducing: *PolarFly**

* K. Lahotia, M. Besta, L. Monroe, K. Isham, P. Iff, T. Hoefler, and F. Petrini. "PolarFly: A Cost-Effective and Flexible Low-Diameter Topology". The *International Conference for High Performance Computing, Networking, Storage, and Analysis* (SC22). November 2022. https://arxiv.org/abs/2208.01695. INTEL LABS – PARALLEL COMPUTING LAB

• All self-perpendicular quadrics (red) form a cluster.

- All self-perpendicular quadrics (red) form a cluster.
- Pick one as the starter quadric l.
- Take all vectors c perpendicular to l.
 - These are the centers.

- All self-perpendicular quadrics (red) form a cluster.
- Pick one as the starter quadric *l*.
- Take all vectors *c* perpendicular to *l*.
 These are the centers.
- Each center *c* starts its own cluster:
 - All vectors v perpendicular to c.

- All self-perpendicular quadrics (red) form a
- Pick one as the starter quadric l.
- Take all vectors *c* perpendicular to *l*.
 These are the centers.
- Each center *c* starts its own cluster:
 - All vectors v perpendicular to c.

- Each non-quadric cluster has q + 1 connections to the quadric cluster.
- Each non-quadric cluster has q 2 connections to non-quadric clusters.

Structure: Triangles internal to non-quadric clusters

- There are q non-quadric clusters.
- Each non-quadric cluster is a fan-out of $\frac{q-1}{2}$ triangles.

0 hops from starter quadric.

1 hop from starter quadric.

2 hops from starter quadric.

0 hops from another quadric.

1 hop from another quadric.

2 hops from another quadric.

O hops from a center element.

1 hop from a center element.

2 hops from a center element.

0 hops from a V1 element.

1 hop from a V1 element.

2 hops from a V1 element.

0 hops from a V2 element.

1 hop from a V2 element.

2 hops from a V2 element.

PolarFly: Scalability

- Provably optimal scale for a given radix
- Reaches Moore Bound asymptotically
- More flexible and scalable than prior-art

Diameter-2 Moore Bound Comparison

PolarFly: Scalability ... continued

- HyperX requires radix 62 to connect
 1,056 nodes
 - 32,736 cables and optical IO modules
- PolarFly can achieve the same scale with radix 33
 - Only 17,424 cables and optical IO modules
- Cost-savings & better performance

To sum up ...

- Al is redefining not just what compute can do for us, but also how we do compute
- Demand for compute is scaling faster than we can meet
- Memory and networking growth are falling behind, creating an ever-larger gap with compute
- Significant cost of sustaining AI compute scaling lies in meeting its energy cost
- Increasing fraction of energy is spent moving data, not computing on data
- High-radix optical networks have the potential to significantly address network latency, energy and cost.
- Polar Fly offers a promising basis for building a high-radix, diameter-2 network that can scale-up to thousands of GPUs.
 - Diameter-3 is research-in-progress

Thank you for your time!

• Questions?

Back up

Are there graphs that meet the Moore bound?

- Yes, but not very many.
 - The family of complete graphs K_n
 - Diameter 2 with degrees 2, 3, 7 and maybe 57
- How about asymptotically? Yes!
 - The Erdős-Rényi (ER) polarity graphs do.

Paul Erdős

Petersen graph: degree 3, 10 routers

Hoffman-Singleton graph: degree 7, 50 routers