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Two Virtuous Cycles Accelerating AI Innovations

Expanding Application Space of AI

Designing Better Systems for AI

Designing Better Systems with AI

Making AI Algorithms More Capable

Ensuring AI Stays Good
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Making AI Algorithms More Capable:
From perception to reasoning

Where are we headed next …
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AI Problem Statement & the GenAI Opportunity
▪ AI Update:

• Trained on text, image, code or protein … data, AI can now learn a model that 
generates a novel text, image, code or protein … that is indistinguishable, yet original 
compared to the training data 

→ AI’s Dream Moment: AI claiming to do what human minds do every night while dreaming

• We can avoid training-from-scratch for various use cases, and instead cheaply (in cost 
terms) fine-tune or augment a large model down to a smaller-and-better model for a 
specific context.

▪ AI Opportunity:

• Above two have significantly sped up the permeation of AI into various content 
creation and decision-making workflows, which were reluctant in adopting AI so far, 
simply because of economies-of-scale associated with more machine-and-less-
human-cycles in the workflow.
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Agentic Era AI
From Perception To Action

▪ Promises:

• Kahneman’s (S2 → S1) loop

• Learned object features → action motifs

• Multi-agent collaboration

• Human-in-the-loop → Humanoids*

▪ Challenges:

• LLM models running out of training data

• Current algorithms need revisit **

• Safe Superintelligence?

Act Reason

Sense

Embodiment Policy Action

Foundation Agents

Text/Image/… In

Foundation Models

Text/Image/… Out

Neural Neural + Symbolic

Explainable AI

Mostly Transformer-LLM Based

(Transformer + RL/MPC) Loop• Generally Capable Agents in Open-Ended Worlds, Jim Fan, NVIDIA GTC’24 <link>
**   Objective-Driven AI, Prof. Yann Lecun <link>

https://www.youtube.com/watch?v=ZSPEyFqAGDc
https://youtu.be/MiqLoAZFRSE?si=_1P48fAc0Jxl6XVr
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Scaling Challenges In the Agentic AI Era

▪Compute flops-bandwidth requirements have gone up 100-1000x or 
more at the high end (pre-training) and 10-100x for the volume server 
and client as well. 

▪ Easier to meet compute flops needs than feed needs

▪Highest-level manifestation of limitations that could end-it-all:

• Energy cost of sustaining AI compute needs: primarily rooted in cost of data 
movement

• Developer disconnect: Growing gap of ninja-performance vs. data-scientists 
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Credit: AI and Memory Wall, Amir Gholami <link>

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Innovation Opportunities

▪ Compute: 

• Numerics (~1b/tensor), unstructured sparsity, compute-in/near-memory/network, dataflow

▪ North-South: Feed the compute

• >10x BW than HBM at some reasonable capacity-tradeoff at iso-power

▪ East-West: 

• Scaling up/out: High-radix, optical networking with <10fj/b-mm vs. >100fj/b-mm today

▪ Software: 

• Compiled performance, self-organizing code, 

• Natural language → SQL/plans … (AI generated)

▪ Packaging-and-cooling
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Source: Chiplet Cloud … <link>

Source: https://arxiv.org/pdf/2302.14017

Source: 

Google MLSYS ‘23

LLM Inferencing: Compute Intensity Challenged

https://arxiv.org/pdf/2307.02666v3
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
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Addressing Capacitor Limitation of DRAM *

* Design Guidelines for Oxide Semiconductor
Gain Cell Memory on a Logic Platform, Phillip Wong, et.al. , 
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 71, NO. 5, MAY 2024
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Network Scalability
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The Datacenter as a Computer: An Introduction to the Design of 
Warehouse-Scale Machines, Second Edition
Luiz André Barroso, Jimmy Clidaras, Urs Hölzle
Morgan & Claypool Publishers (2013)

2013

Datacenter today has supercomputer-
class compute …

Image courtesy: Aurora Supercomputer, Argonne National Lab <link>

Era of ‘Datacenter as a Computer’ is almost here

https://www.alcf.anl.gov/aurora
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Animation Credit: What's next for photonics-powered data centers and AI; Nick Harris, CEO Lightmatter <link>

https://youtu.be/6Bo-T9XNTvU?si=GAUIVSReEXIwsWAs
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High Radix Networks and Photonics

• High radix, low diameter networks are technically a superior option …
• The more routers a packet goes through, more the latency, congestion, delay …

• Hop minimization should therefore be a goal: ideally 2 to 3 hops maximum

• Photonics offers a promising technology path for high-radix networks
• Optical IO latency is determined by time-of-flight (ToF): 5 nsec/meter

• Rack level ~10 nsec, data center with 40 meters:  ~200 nsec

• Total network latency = network hops * routing delay + ToF  < 500 nsec
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High Radix Networks and An Open Graph Theory Problem

• Degree/diameter problem:  
• What is the order of the largest graph with a given degree and 

diameter?

• Moore Bound limits the number of nodes in a graph:
• 𝑑 is the graph degree, or router radix 

• 𝑘 is the diameter, or maximum number of hops.

• 𝑀 𝑑, 𝑘 =
𝑑 𝑑−1 𝑘 −2

𝑑−2

• Want to maximize nodes and minimize diameter

• It remains an open problem whether or how close one can 
get to the Moore bound in terms of a constructible graph

Moore Bound construction: 
degree  d = 3, diameter k = 2
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Moore’s Bound and the Degree/Diameter Problem 

• The Moore bound is 𝒪(𝑑𝑘).
• 1 hop (𝑘 = 1) can reach at most 𝑑 different destinations.

• 2 hops (𝑘 = 2) can reach at most (𝑑2 + 1) destinations.
• For 𝑑=32, the bound is 1025.

• For 𝑑 = 64, the bound is 4097.

• For d=128, the bound is 16,385

• 3 hops (𝑘 = 3) can reach at most (𝑑3−  𝑑2 + 𝑑 + 1) destinations.
• For 𝑑=32, the bound is 31,777.

• For 𝑑=64, the bound is 258,113.

• For 𝑑=128, the bound is 2,080,897
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Reality Today of Low-Diameter, High-Radix Networks: 2D HyperX
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• Discovered independently by Erdős-Rényi (1962) and by Brown (1966).

• An isomorphic construction was discovered even earlier by Singer (1938).

• ER graphs are from projective geometry over the finite field of order 𝑞.

Erdős-Rényi polarity graphs …

Paul Erdős Alfréd Rényi William G. Brown
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Basic idea (geometry and a little Galois theory)
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• If 𝑙0 ≠ 𝑙1are any two vectors, there is a vector 𝑚 perpendicular to both.
• (It’s the cross-product.)

Basic idea (geometry and a little Galois theory)
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• If 𝑙0 ≠ 𝑙1are any two vectors, there is a vector 𝑚 perpendicular to both.
• (It’s the cross-product.)

• What if we constructed a graph with edges expressing dot-product 
perpendicularity?

• (𝑙0, 𝑚) and (𝑚, 𝑙1)  are edges in the graph, so you can get from 𝑙0 to 𝑙1 via 𝑚.

• So this graph has diameter 𝟐.

Basic idea (geometry and a little Galois theory)
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• If 𝑙0 ≠ 𝑙1are any two vectors, there is a vector 𝑚 perpendicular to both.
• (It’s the cross-product.)

• What if we constructed a graph with edges expressing dot-product 
perpendicularity?

• (𝑙0, 𝑚) and (𝑚, 𝑙1)  are edges in the graph, so you can get from 𝑙0 to 𝑙1 via 𝑚.

• So this graph has diameter 𝟐.

•  Use non-0 vectors from 𝔽𝑞
3  whose first non-0 entry is 1: 

• Fact: each is perpendicular to 𝑞+1 vectors, so degree is 𝑞+1.

• So the diameter-2 Moore bound is 𝒒𝟐 + 𝟐𝒒 + 𝟐.

• Fact: number of nodes/vectors is 𝒒𝟐 + 𝒒 + 𝟏.

Basic idea (geometry and a little Galois theory)
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• If 𝑙0 ≠ 𝑙1are any two vectors, there is a vector 𝑚 perpendicular to both.
• (It’s the cross-product.)

• What if we constructed a graph with edges expressing dot-product 
perpendicularity?

• (𝑙0, 𝑚) and (𝑚, 𝑙1)  are edges in the graph, so you can get from 𝑙0 to 𝑙1 via 𝑚.

• So this graph has diameter 𝟐.

•  Use non-0 vectors from 𝔽𝑞
3  whose first non-0 entry is 1: 

• Fact: each is perpendicular to 𝑞+1 vectors, so degree is 𝑞+1.

• So the diameter-2 Moore bound is 𝒒𝟐 + 𝟐𝒒 + 𝟐.

• Fact: number of nodes/vectors is 𝒒𝟐 + 𝒒 + 𝟏.

• The number of nodes is pretty close to the Moore bound!

Basic idea (geometry and a little Galois theory)
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• 𝐸𝑅𝑞  has diameter 2.

• There are 𝑞2 + 𝑞 + 1 nodes in 𝐸𝑅𝑞 .

• Each non-quadric node has degree 𝑞 + 1
• So, the graph has degree 𝑞 + 1, and the Moore bound is (𝑞 + 1)2+1.

• 𝑬𝑹𝒒 asymptotically approaches the Moore bound: 

Summing up 𝐸𝑅𝑞  …

# 𝑛𝑜𝑑𝑒𝑠

𝑀𝑜𝑜𝑟𝑒 𝑏𝑜𝑢𝑛𝑑
=

𝑞2+𝑞+1

(𝑞+1)2+1
⟹ 1, as 𝑞 ⟹ ∞
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Four types of vertices
1. Quadrics
2. Centers
3. V1
4. V2

Can 𝐸𝑅𝑞  form the basis for laying out a high-radix network?

* K. Lahotia, M. Besta, L. Monroe, K. Isham, P. Iff, T. Hoefler, and F. Petrini. “PolarFly: A Cost-Effective and Flexible Low-Diameter 

Topology”. The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC22). November 2022. 

https://arxiv.org/abs/2208.01695.

Yes … Introducing: PolarFly *

https://arxiv.org/abs/2208.01695
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• All self-perpendicular quadrics (red) form a cluster.

Structure of PolarFly
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• All self-perpendicular quadrics (red) form a cluster.

• Pick one as the starter quadric 𝑙.

• Take all vectors 𝑐 perpendicular to 𝑙. 
• These are the centers.

Structure of PolarFly
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• All self-perpendicular quadrics (red) form a cluster.

• Pick one as the starter quadric 𝑙.

• Take all vectors 𝑐 perpendicular to 𝑙. 
• These are the centers.

• Each center 𝑐 starts its own cluster: 
• All vectors 𝑣 perpendicular to 𝑐.

Structure of PolarFly
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• All self-perpendicular quadrics (red) form a cluster.

• Pick one as the starter quadric 𝑙.

• Take all vectors 𝑐 perpendicular to 𝑙. 
• These are the centers.

• Each center 𝑐 starts its own cluster: 
• All vectors 𝑣 perpendicular to 𝑐.

• Each non-quadric cluster has 𝑞 + 1 connections to the quadric cluster.
• Each non-quadric cluster has 𝑞 − 2 connections to non-quadric 

clusters.

Structure of PolarFly
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Structure: Triangles internal to non-quadric clusters

• There are 𝑞 non-quadric clusters.

• Each non-quadric cluster is a fan-out of  
𝑞−1

2
  triangles.

𝑞 = 11 𝑞 = 13 𝑞 = 17 𝑞 = 19
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0 hops from starter 
quadric.

Moving from starter quadric to all other nodes
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Moving from starter quadric to all other nodes

1 hop from starter quadric.
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Moving from starter quadric to all other nodes

2 hops from starter 
quadric.



34INTEL LABS – PARALLEL COMPUTING LAB

Moving from another quadric to all other nodes

0 hops from another 
quadric.
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Moving from another quadric to all other nodes

1 hop from another quadric.
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Moving from another quadric to all other nodes

2 hops from another quadric.
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Moving from a center element to all other 
nodes

0 hops from a center 
element.
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Moving from a center element to all other 
nodes

1 hop from a center element.
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Moving from a center element to all other 
nodes

2 hops from a center 
element.
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Moving from a V1 vertex to all other nodes

0 hops from a V1 element.
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Moving from a V1 vertex to all other nodes

1 hop from a V1 element.
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Moving from a V1 vertex to all other nodes

2 hops from a V1 element.
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Moving from a V2 vertex to all other nodes

0 hops from a V2 element.
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Moving from a V2 vertex to all other nodes

1 hop from a V2 element.
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Moving from a V2 vertex to all other nodes

2 hops from a V2 element.
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• Provably optimal scale for a given radix

• Reaches Moore Bound asymptotically

• More flexible and scalable than prior-art
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PolarFly: Scalability
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• HyperX requires radix 62 to connect 

1,056 nodes

• 32,736 cables and optical IO modules 

• PolarFly can achieve the same scale 

with radix 33

• Only 17,424 cables and optical IO modules

• Cost-savings & better performance

PolarFly: Scalability … continued
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To sum up …

• AI is redefining not just what compute can do for us, but also how we do 
compute

• Demand for compute is scaling faster than we can meet

• Memory and networking growth are falling behind, creating an ever-larger gap 
with compute

• Significant cost of sustaining AI compute scaling lies in meeting its energy cost

• Increasing fraction of energy is spent moving data, not computing on data

• High-radix optical networks have the potential to significantly address network 
latency, energy and cost.

•  Polar Fly offers a promising basis for building a high-radix, diameter-2 network 
that can scale-up to thousands of GPUs.

• Diameter-3 is research-in-progress
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Thank you for your time!

• Questions?
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Back up
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▪ Yes, but not very many.

• The family of complete graphs 𝐾𝑛 

• Diameter 2 with degrees 2, 3, 7 and maybe 57

▪How about asymptotically? Yes! 

• The Erdős-Rényi (ER) polarity graphs do.

Are there graphs that meet the Moore bound?

Petersen graph: degree 3, 10 routers

Hoffman-Singleton graph: degree 7, 50 routersPaul Erdős Alfréd Rényi
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