Artificial Intelligence and Machine Learning for RF and Microwave Design: practical technologies for present and future applications

Jianjun Xu¹ and David E. Root²

¹Keysight Technologies, Santa Rosa, CA, USA ²Keysight Technologies, Santa Rosa, CA, USA (Retired)

Outline

- Introduction to AI, ML and ANN
- ANN for electronic device modeling
- ANN for electronic behavioral modeling
- Summary

Outline

- Introduction to AI, ML and ANN
- ANN for electronic device modeling
- ANN for electronic behavioral modeling
- Summary

AI and ML

AI and ML

Introduction to Artificial Neural Networks (ANN)

Universal approximation Theorem:

Can fit any nonlinear function of many variables

- Easy to train on scattered data
- Fast to evaluate
- Infinitely differentiable
- Simple link (Verilog-A, ONNX, ...) to Simulators

Introduction to Artificial Neural Networks (ANN)

Well-known training methods (e.g. back-propagation)

- No equation development needed
- No user-defined parameter extraction strategy

Outline

- Introduction to AI, ML and ANN
- ANN for electronic device modeling
- ANN for electronic behavioral modeling
- Summary

Device Modeling

Conventional Device Modeling Flow

ANN Training

11

ANNs in DynaFET [2] model for GaN transistors

 Richer data necessary to identify complicated dynamics

- ANNs used to model the detailed, general, multi-variate coupling
 - Accurate and general
 - No additional assumptions (e.g., backgating/virtual gate)

- > One global model that predicts, simultaneously:
 - DC and S-parameters
 - Large-signal nonlinearities(distortion, load-pull, PAE)
 - Long-term memory effects
 - No application-specific model tuning needed

DynaFET model for GaN transistors [2]

DynaFET model for GaN transistors [2]

ANN for Cryogenic CMOS Modeling [3]

TECHNOLOGIES

ANN for Cryogenic CMOS Modeling [3]

Battery Modeling [4]

[4] M. Kasper et al, "Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396 Cylindrical Cells", Batteries & Supercaps published by Wiley-VCH GmbH, 2022.

Battery Modeling [4]

[4] M. Kasper et al, "Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396 Cylindrical Cells", Batteries & Supercaps published by Wiley-VCH GmbH, 2022.

"Hybrid" physical – ANN modeling methodology [5]

- maintains physics with increased accuracy

KEYSIGHT TECHNOLOGIES

[5] IC-CAP, Keysight Technologies, Inc. https://www.keysight.com/us/en/lib/software-detail/computer-software/pathwave-device-modeling-iccap-software-2213548.html

Outline

- Introduction to AI, ML and ANN
- ANN for electronic device modeling
- ANN for electronic behavioral modeling
- Summary

Behavioral Modeling

Device Model

$$\Box x$$
$$B = X(A)$$

Behavioral Model

Design of Front End Module or IC

Behavioral Modeling

ANN for Frequency Domain Behavioral Modeling

Load-dependent X-parameter Model [6]

- Spectral linearization around LSOP=[Bias, Freq, |A_{1,1}|, real(A_{2,1}), imag(A_{2,1})]
- $P = e^{j\phi(A_{II})}$ Phase of A11
- Outputs assuming all harmonics are matched
- Cross-frequency mismatch sensitivity terms

ANN for Frequency Domain Behavioral Modeling

Current limitations:

- Gridded data structure forces high volume of data measurement, some conditions are hard or difficult (device damage) to measure
- Accurate simulation requires a large table of data
- Time to load data file is long and Memory usage is large
- Results may depend on particular simulator capabilities to read tables and interpolation algorithms

Benefits of replacing tables with ANNs:

- Data can be taken as needed for accuracy (e.g., adaptively) and as may be constrained by device operation
- Discrete data is converted to smooth functions for further applications downstream (optimization, system simulation, hierarchical modeling, Digital Twin)

Downside of ANNs for X-parameter modeling:

Training times may be long, requiring parallel training infrastructure (Keysight unpublished work)

ANN for Frequency Domain Behavioral Modeling

WJ FP2189 1W HFET

Model Validations fund=2GHz, @Vd=8V, Id=250mA, Pin=12dBm

The results of unpublished ANN-based X-parameter model is virtually identical to the table-based results first published [8] shown in these plots.

Measurements ANN based X-parameter Simulation

ANN for Time Domain Behavioral Modeling

Dynamic Neural Network (DNN)

ANN for Time Domain Behavioral Modeling [7]

	RNN Model	Original PA
CPU Time for evaluation of 900 different sets of input–output waveforms	10 seconds	177 seconds

[7] Y.H. Fang et al, "A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks," *IEEE Trans. Microw. Theory Tech*, vol. 48, pp. 2335–2344, Dec. 2000.

Outline

- Introduction to AI, ML and ANN
- ANN for electronic device modeling
- ANN for electronic behavioral modeling
- Summary

Summary

Summary

Future Potential

[8] J. Du et al, "Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service", *IEEE Vehicular Technology Magazine*, vol. 15, pp. 122-134, Dec. 2020.

Thank you!

