Artificial Intelligence and Machine Learning for RF and Microwave Design: *practical technologies for present and future applications*

Jianjun Xu¹ and David E. Root²

¹Keysight Technologies, Santa Rosa, CA, USA ²Keysight Technologies, Santa Rosa, CA, USA (Retired)

Outline

- **Introduction to AI, ML and ANN**
- **ANN for electronic device modeling**
- **ANN for electronic behavioral modeling**
- **Summary**

Outline

- **Introduction to AI, ML and ANN**
- **ANN for electronic device modeling**
- **ANN for electronic behavioral modeling**
- **Summary**

AI and ML

AI and ML

Introduction to Artificial Neural Networks (ANN)

Universal approximation Theorem:

Can fit any nonlinear function of many variables

- Easy to train *on scattered data*
- Fast to evaluate
- Infinitely differentiable
- Simple link (Verilog-A, ONNX, …) to Simulators

Introduction to Artificial Neural Networks (ANN)

• No equation development needed

• No user-defined parameter extraction strategy

Outline

- **Introduction to AI, ML and ANN**
- **ANN for electronic device modeling**
- **ANN for electronic behavioral modeling**
- **Summary**

Device Modeling

Conventional Device Modeling Flow

ANN Training

11

ANNs in DynaFET [2] model for GaN transistors

➢ **Richer data necessary to identify complicated dynamics**

- ➢ **ANNs used to model the detailed, general, multi-variate coupling**
	- Accurate and general
	- No additional assumptions (e.g., backgating/virtual gate)
- ➢ *One global model* **that predicts, simultaneously:**
	- DC and S-parameters
	- Large-signal nonlinearities(distortion,load-pull,PAE)
	- Long-term memory effects
	- No application-specific model tuning needed

DynaFET model for GaN transistors [2]

DynaFET model for GaN transistors [2]

ANN for Cryogenic CMOS Modeling [3]

TECHNOLOGIES

ANN for Cryogenic CMOS Modeling [3]

Battery Modeling [4]

[4] M. Kasper et al, "Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396 Cylindrical Cells", *Batteries & Supercaps published by Wiley-VCH GmbH*, 2022.

Battery Modeling [4]

[4] M. Kasper et al, "Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396 Cylindrical Cells", *Batteries & Supercaps published by Wiley-VCH GmbH*, 2022.

"Hybrid" physical – ANN modeling methodology [5]

- maintains physics with increased accuracy

Outline

- **Introduction to AI, ML and ANN**
- **ANN for electronic device modeling**
- **ANN for electronic behavioral modeling**
- **Summary**

Behavioral Modeling

Device Model

X $B = X(A)$

Behavioral Model

Design of Front End Module or IC

Behavioral Modeling

ANN for Frequency Domain Behavioral Modeling

Load-dependent X-parameter Model [6]

- Spectral linearization around *LSOP*=[*Bias, Freq, |A1,1|, real(A2,1), imag(A2,1)*]
- $P = e^{j\phi(A_{II})}$ Phase of A11
- Outputs assuming all harmonics are matched
- Cross-frequency mismatch sensitivity terms

ANN for Frequency Domain Behavioral Modeling

Current limitations:

- Gridded data structure forces high volume of data measurement, some conditions are hard or difficult (device **be constrained by device operation**
damage) to measure damage) to measure
- α (dependence of α and α and α and α and α and α and α • Accurate simulation requires a large table of data
- Time to load data file is long and Memory usage is large
- Results may depend on particular simulator capabilities to **Downside of A** read tables and interpolation algorithms

Benefits of replacing tables with ANNs:

- Data can be taken as needed for accuracy (e.g., adaptively) and as may be constrained by device operation
- Discrete data is converted to smooth functions for further applications downstream (optimization, system simulation, hierarchical modeling, Digital Twin)

Downside of ANNs for X-parameter modeling:

exa tables and interpolation algorithms $(Keysight$ unpublished work) • Training times may be long, requiring parallel training infrastructure

ANN for Frequency Domain Behavioral Modeling

WJ FP2189 1W HFET

Model Validations fund=2GHz, @Vd=8V, Id=250mA, Pin=12dBm

The results of unpublished ANN-based X-parameter model is virtually identical to the table-based results first published [8] shown in these plots.

Measurements ANN based X-parameter Simulation

ANN for Time Domain Behavioral Modeling

ANN for Time Domain Behavioral Modeling [7]

[7] Y.H. Fang et al, "A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks," *IEEE Trans. Microw. Theory Tech*, vol. 48, pp. 2335–2344, Dec. 2000.

Outline

- **Introduction to AI, ML and ANN**
- **ANN for electronic device modeling**
- **ANN for electronic behavioral modeling**
- **Summary**

Summary

Summary

Future Potential

• **Meet requirements from emerging services**

[8] J. Du et al, "Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service", *IEEE Vehicular Technology Magazine*, vol. 15, pp. 122-134, Dec. 2020.

Thank you!

