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AI and ML
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Universal approximation Theorem: 
Can fit any nonlinear function of many variables
• Easy to train on scattered data
• Fast to evaluate
• Infinitely differentiable
• Simple link (Verilog-A, ONNX, …) to Simulators
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x1       x2   x3
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xi

Hidden Neuron Output

Outputs

y =  Vk Zk
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parameters w = [Wki, Vk]

y = f(x1, x2, x3) 

 Wki      Zk = tanh(    )

Introduction to Artificial Neural Networks (ANN)
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Well-known training methods (e.g. back-propagation)

• No equation development needed

• No user-defined parameter extraction strategy
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Introduction to Artificial Neural Networks (ANN)
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VNA

DC

Parameter 

Extraction

Gate DrainSource

Drawbacks:
• Expert intensive (Ph.D.) and Time consuming

• Technology dependent; hard to maintain

• Parameter Extraction (Optimization) not always well-posed

• May never get good results!

Advantages :
• Model is general and accurate 

• Easy to extract (train)

• Technology independent; easy to maintain

• The model computation is fast

• Infinitely differentiable and smooth
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ANN 

Training

ANN weights

Conventional Device Modeling Flow
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[1] J. Xu et al, “Exact adjoint sensitivity analysis for neural based microwave modeling and design,” IEEE Trans. Microw. Theory Tech, vol. 51, pp.226-237, 2003.
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➢ ANNs used to model the detailed, 

    general, multi-variate coupling

•  Accurate and general

•  No additional assumptions

   (e.g., backgating / virtual gate)

➢ One global model that predicts, simultaneously:

•  DC and S-parameters

•  Large-signal nonlinearities  (distortion, load-pull, PAE)

•  Long-term memory effects

•  No application-specific model tuning needed

ANNs in DynaFET [2] model for GaN transistors

Thermal 

Network

Gate-lag Drain-lag

Ave(Vgs) Ave(Vds)NVNA Waveforms

➢ Richer data necessary to

     identify complicated dynamics

[2] J. Xu et al, “Dynamic FET Model - DynaFET - for GaN Transistors from NVNA Active Source Injection Measurements,” IEEE MTT-S Int. Micro. Symp. Dig., June 2014.



13

Model Validations – Load-pull Contours
fund=10GHz, @Vd=12V, Id=54mA, Pin=24dBm

DynaFET model for GaN transistors [2]

Raytheon 6x60 m GaN HFET

[2] J. Xu et al, “Dynamic FET Model - DynaFET - for GaN Transistors from NVNA Active Source Injection Measurements,” IEEE MTT-S Int. Micro. Symp. Dig., June 2014.
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Model Validations – Load-pull Contours
fund=10GHz, @Vd=12V, Id=54mA, Pin=24dBm

DynaFET model for GaN transistors [2]

Raytheon 6x60 m GaN HFET

[2] J. Xu et al, “Dynamic FET Model - DynaFET - for GaN Transistors from NVNA Active Source Injection Measurements,” IEEE MTT-S Int. Micro. Symp. Dig., June 2014.
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ANN for Cryogenic CMOS Modeling [3] 

Enabling circuit 

simulations for 

quantum control 

applications

• Device characteristics at cryogenic 

temperatures are different from 

those at room temperature

• Existing models and extraction 

procedures may not be effective

• So far, there is not yet consensus 

on a standard cryo-CMOS model 

[3] P.A. ‘t Hart et al, “Artificial Neural Network Modelling for Cryo-CMOS Devices”, IEEE 14th Workshop on Low Temperature Electronics (WOLTE), April 2021.
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Voltage Reference Circuits

observed but never 

previously simulated

ANN for Cryogenic CMOS Modeling [3] 

Keysight ADS 

implementation with 

ANN models

[3] P.A. ‘t Hart et al, “Artificial Neural Network Modelling for Cryo-CMOS Devices”, IEEE 14th Workshop on Low Temperature Electronics (WOLTE), April 2021.
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Battery Model

Battery Modeling [4] 

……

[4] M. Kasper et al, “Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396  

       Cylindrical Cells”, Batteries & Supercaps published by Wiley-VCH GmbH, 2022.
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Keysight Battery

Test System

Electrochemical 
Impedance 

Spectroscopy (EIS) 

Predicting the battery’s behavior at 
different Temperature and State of 

charge (SOC)

Battery Model

r0

r0

r0 = F(SOC, Temp)

State of charge(SOC)

Battery Modeling [4] 

[4] M. Kasper et al, “Calibrated Electrochemical Impedance Spectroscopy and Time-Domain Measurements of a 7 kWh Automotive Lithium-Ion Battery Module with 396  

       Cylindrical Cells”, Batteries & Supercaps published by Wiley-VCH GmbH, 2022.
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ID = -((Kp/((1+v2s/Vsat)*(1+theta*(VGSi-VTB))))/CGSon)*qiB*v2s*(1+lda*VDSi) - ddt(qj) - I(s,idd)

Physical Model

Add ANN

“Hybrid” physical – ANN modeling methodology [5]
- maintains physics with increased accuracy

Power MOSFET

[5] IC-CAP, Keysight Technologies, Inc. https://www.keysight.com/us/en/lib/software-detail/computer-software/pathwave-device-modeling-iccap-software-2213548.html

https://www.keysight.com/us/en/lib/software-detail/computer-software/pathwave-device-modeling-iccap-software-2213548.html
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Behavioral Modeling
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Actual Circuit

Design of Front End Module or IC

Measurement-Based Model
• Circuit model may not exist

• Circuit models may be inaccurate

• Completely protect design IP

Generate

Behavioral

Model

Detailed Circuit Model 
(SPICE/ADS) of IC 

Simulation-Based Model
• Detailed circuit simulation is too slow

• Design system before building IC

• Completely protect design IP

• Do more in simulator than possible on instrument

Behavioral Modeling
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ANN for Frequency Domain Behavioral Modeling 

2kA
1kA

1kB 2kB

• Spectral linearization around LSOP=[ Bias, Freq, |A1,1|, real(A2,1), imag(A2,1) ]

•                     Phase of A11

• Outputs assuming all harmonics are matched

• Cross-frequency mismatch sensitivity terms
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Load-dependent X-parameter Model [6]
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[6] D. E. Root et al, “X-Parameters, Characterization, modeling, and design of nonlinear RF and microwave components,” Cambridge University Press, 2013.
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Current limitations:

• Gridded data structure forces high volume of data measurement, some conditions are hard or difficult 

(device damage) to measure

• Accurate simulation requires a large table of data

• Time to load data file is long and Memory usage is large

• Results may depend on particular simulator capabilities to read tables and interpolation algorithms
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VDC Freq |A1,1| Real(A2,1) Imag(A2,1) Real(XF2,1)

2.0 1e9 0.0375 0.0316 -0.123 0.0315

5.0 2e9 0.0467 0.1643 -0.588 0.1041

8.0 3e9 0.1470 0.5623 -0.963 -0.3162

… … … … … …

VDC Freq |A1,1| Real(A2,1) Imag(A2,1) Real(XS2,1,2,3)

2.0 1e9 0.0375 0.0316 -0.123 0.0015

5.0 2e9 0.0467 0.1643 -0.588 0.2102

8.0 3e9 0.1470 0.5623 -0.963 -0.1116

… … … … … …

VDC Freq |A1,1| Real(A2,1) Imag(A2,1) Real(XT2,1,2,3)

2.0 1e9 0.0375 0.0316 -0.123 -0.6031

5.0 2e9 0.0467 0.1643 -0.588 -0.5104

8.0 3e9 0.1470 0.5623 -0.963 0.2316

… … … … … …

ANN for Frequency Domain Behavioral Modeling 

VDC  Freq  |A1,1|  re(A2,1)  im(A2,1)

re(XF2,1)

VDC  Freq  |A1,1|  re(A2,1)  im(A2,1)

re(XS2,1,2,3)

VDC  Freq  |A1,1|  re(A2,1)  im(A2,1)

re(XT2,1,2,3)

Current limitations:

• Gridded data structure forces high volume of data 

measurement, some conditions are hard or difficult (device 

damage) to measure

• Accurate simulation requires a large table of data

• Time to load data file is long and Memory usage is large

• Results may depend on particular simulator capabilities to 

read tables and interpolation algorithms

Benefits of replacing tables with ANNs:

• Data can be taken as needed for accuracy (e.g., adaptively) and as may 

be constrained by device operation

• Discrete data is converted to smooth functions for further applications 

downstream (optimization, system simulation, hierarchical modeling, 

Digital Twin)

Downside of ANNs for X-parameter modeling:

• Training times may be long, requiring parallel training infrastructure 

(Keysight unpublished work)
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Model Validations
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Id=250mA, Pin=12dBm

ANN for Frequency Domain Behavioral Modeling 

The results of unpublished 

ANN-based X-parameter 

model is virtually identical 

to the table-based results 

first published [8] shown 

in these plots. 

[6] D. E. Root et al, “X-Parameters, Characterization, modeling, and design of nonlinear RF and microwave components,” Cambridge University Press, 2013.
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ANN for Time Domain Behavioral Modeling 

….



fANN
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x(t)y(1)(t) y(n)(t)

y(t)

x(1)(t) x(n)(t)

Recurrent Neural Network (RNN) Dynamic Neural Network (DNN)

𝑦 𝑡 = 𝑓𝐴𝑁𝑁(𝑦 𝑡 −  , …, 𝑦 𝑡 − n , 𝑥 𝑡 , 𝑥 𝑡 −  , … ,𝑥 𝑡 − n ) 𝑦 𝑡 = 𝑓𝐴𝑁𝑁(𝑦(1) 𝑡 , …,𝑦(𝑛) 𝑡 , 𝑥 𝑡 , 𝑥(1) 𝑡 , …,𝑥(𝑛) 𝑡 )
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() Original PA    

(_) RNN model

Time (s)

V
o

u
t 
(V

)

RNN Model Original PA

CPU Time for evaluation 
of 900 different sets of 

input–output waveforms
10 seconds 177 seconds

ANN for Time Domain Behavioral Modeling [7] 

[7] Y.H. Fang et al, “A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks,” IEEE Trans. Microw. Theory Tech, 

     vol. 48, pp. 2335–2344, Dec. 2000.
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Summary

Supervised Learning

Unsupervised Learning

Reinforcement Learning

X Model X’

Transformation

Model

AI
ML

e.g.,
• Device modeling
• Device characterization
• Behavioral modeling
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Summary

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Model

AI
ML

e.g.,
• Optimization and multi-physics
    Exploration and exploitation for design
    problems with many variables

e.g.,
• Automatic Circuit Tuning

e.g.,
• Device modeling
• Device characterization
• Behavioral modeling

Automates the post-fabrication circuit tuning process
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Future Potential

[8] J. Du et al, “Machine Learning for 6G Wireless Networks: Carrying Forward Enhanced Bandwidth, Massive Access, and Ultrareliable/Low-Latency Service”, 

       IEEE Vehicular Technology Magazine, vol. 15, pp. 122-134, Dec. 2020.

AI
ML

6G 

Network

[8]

• Make more optimized and adaptive data-driven decisions

• Alleviate communication challenges

• Meet requirements from emerging services
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Thank you!
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