Energy and Thermal Management of Chips, Systems and Data Centers necessitates a return to fundamentals

Return to the way we were

Chandrakant D. Patel

HP Inc. Senior Fellow

1

IEEE EDPS October 2024

Objective

A holistic* systemic fundamentals-based approach to energy and thermal management required in order to

- *Maximize the performance of chips and technologies*
- *Focus on available energy as opposed to pricing of electricity, the latter a fleeting proposition in the Age of AI*

2 Cullen Bash, Jessica Bian, Dejan Milojicic, Chandrakant D. Patel, Luka Strezoski, Vladimir Terzija, and Dejan Milojicic. "Energy Supplies for Future Data Centers" Computer 57, 7 (July 2024), 126–134. https://doi.org/10.1109/MC.2024.3393248

History of Chip Heat Dissipation: Power Capping no longer an option, MCMs Return

Units

SI Units

- Power, or rate of doing work, is measured in Joules per second or Watts
	- KW, MW, GW, TW
- Energy, in Joules, product of power and time
	- Energy use at home, office, etc is represented in KWh
- Heat dissipation is quantified in Watts
- Temperature in C , K
- Mass Flow in kg/s
- Density in Kg/m³

4

- Volume Flow in m^3/s (to facilitate conversation, we will convert to cubic feet per minute in some cases)
- Pressure in Pascals (N/m^2) (to facilitate conversation, we will convert to inches of water in some cases)

Organization

Energy & Sustainability

Overview of Energy and Thermal Management – Data Centers

Thermal Management of Chips & Systems

Framework for Devising Cooling Solutions

- 1. Joules of Available Energy is the Currency
- 2. Supply-Demand Framework Based on Available Energy
- 3. Tracing the Energy Flow from the Power Plant to Chip, and from Chip to the Cooling Tower
	- *Fundamentals Based Key Performance Indicator (KPI)*
- 4. Salient Elements of Thermal Management from Chip to Cooling Tower
- 5. Summary of Cooling Solutions

Energy: It is about Supply and Demand

Tracing the Available Energy Flow to a Chip

Conversion Losses in AC distribution, AC to DC, DC to DC conversion to various voltage levels

Heat out

Power in (pure work)

Available Energy in Waste Streams

1st Law of Thermodynamics

• Chemical Energy in Fuel = Kinetic Energy in Propulsion + Waste

2nd Law of Thermodynamics

- states that available energy or exergy (quality) is destroyed
	- conversion due to thermodynamic irreversibility (waste heat)
	- 1 Joule at 50 °C, with ref to 20 °C ambient, has 0.1 Joule available (exhaust hot air from a computer is low grade)
	- 1 Joule at 500 °C, with ref to 20 °C ambient, has 0.6 Joules available [High Grade]

A, Available Energy, in Joules

- Q, Heat energy in combustible waste products
- T_a, Ambient Temperature or Cold Reservoir temperature, in Kelvins
- T_j, Temperature of the hot gas from the exhaust, in Kelvins

$$
A_{waste\ heat} = \left(1 - \frac{T_a}{T_j}\right)Q
$$

$$
\rightarrow A_{waste} = \left(1 - \frac{T_a}{T_j}\right)Q = \left(1 - \frac{293}{773}\right)Q = 0.6Q
$$

Sustainability Framework based on Available Energy

Integrated Supply-Demand Management

Supply Side

- **C**radle-to-cradle available energy required (Joules) for extraction, manufacturing, waste mitigation (negative externalities), operation and reclamation
- utilize local sources of available energy to minimize destruction of available energy in transmission and distribution
- examine and utilize available energy in waste streams

Demand Side:

- Provision resources based on the needs of the user (ondemand)*
- sensing, communications, knowledge discovery, and policybased control

Smart Data Center Concept: On Demand Provisioning or IT, Power and Cooling in the Data Center – circa 2001

References:

Sharma et. al.,

Patel el.al, "Smart Cooling of Data Centers" , Ipack 2003 Beitelmal and Patel, "Thermo-Fluids Provisioning of Data Centers, Journal of Dist and Parallel Databases, Bash et. al, "Dynamic Thermal Management", Itherm 2006 Shah and Patel, "Data Center Total Cost of Ownership Model

Data Center with Supply Side Power Grid and Cooling Grid

Integrated Supply and Demand Management given the service level objectives

Banerjee, P, Patel, C, Bash E., Shah, A. Arlitt M., "Towards a net-zero data centerJETC, (2012): 27:1-27:39.

Sharma, R., Christian, T., Arlitt, M., Bash, C., and Patel, C. Design of Farm Waste-Driven Supply Side Infrastructure. *4th ASME International Conference on Energy Sustainability*, 2010 Phoenix, AZ (2010)

Media Coverage: Search "cow powered data centers" – NY Times, Wired, Los Angeles Times, 2010

- **Local Power Grid** Biogas (manure from dairy cows, sun)
- **Cooling Grid** Ground Loop, Outside Air
- **Dynamic Managemen**t of Demand Given Supply & Service Level Agreement

Energy and Thermal Management necessitates a Holistic Perspective at the Data Center Level

Overview of Energy and Thermal Management

- Tracing the heat flow, and work required, from chip to cooling tower
- Introduce a Holistic Key Performance Indicator

A Dimensionless KPI: Coefficient of Performance of the Ensemble

Reference: Patel, C.D., Sharma, R.K., Bash, C.E., Beitelmal, M, "Energy Flow in the Information Technology Stack: Introducing the Coefficient of Performance of the Ensemble", ASME International Mechanical Engineering Congress & Exposition, November 5-10, 2006, Chicago, Illinois

Thermo-Fluids Provisioning in the Room to minimize the work required

- Air Flow Distribution
- Temperature Distribution
- Computer Room Air Conditioning (CRAC) provisioning
- Energy Optimization in the Room
- Balance of Power through Workload Distribution to Drive Dynamic Thermal Management of Data Centers [2005]

Sharma, R. K., Bash. C, Patel, C.D, Friedrich R., Chase, J. "Balance of Power: Dynamic Thermal Management for Internet Data Centers" , IEEE Internet Computing, 2005

Beitelmal, A.H., Patel, C.D. Thermo-Fluids Provisioning of a High Performance High Density Data Center. *Distrib Parallel Databases* **21**, 227–238 (2007). https://doi.org/10.1007/s10619-005-0413-0

Estimating Coefficient of Performance of the Ensemble

Reference: Patel, C.D., Sharma, R.K., Bash, C.E., Beitelmal, M, "Energy Flow in the Information Technology Stack: Introducing the Coefficient of Performance of the Ensemble", ASME International Mechanical Engineering Congress & Exposition, November 5-10, 2006,

AI for Complex Systems: Temporal Data Mining of a Chiller System

pattern mining, inference and action

Reference: Patnaik et. al, KDD 2009, HP Smart Data Center Project, Bangalore India Production Data Center

Salient Elements of Thermal Management of Chips and Systems

Thermal Considerations in Efficient Transfer of Heat from Chip to Ambient

- 1. Chip Packaging & Interconnect Considerations
- 2. System Considerations
	- Fluid Flow Required
	- Flow Resistance
	- Sizing the Fluid Mover
	- Fluid Mover Efficiency
- 3. Heat Flow from Chip to Ambient
	- Resistance to Heat Flow
	- Impact on Chip Core Temperature
	- Options for Heat Removal
- 4. Framework for Cooling Solutions

Problem Definition must include Chip Packaging and Interconnect

- The wall temperature of the chip, and the core of the chip, is higher than temperature of the ambient
	- Due to Thermal Resistance (\degree C/W) to heat flow (W)
	- Temperature of Chip Core must be kept at 85 \degree C to 100 \degree C

Understand the pathways to heat transfer

System Considerations *Fluid Flow, Flow Resistance, Flow Work, Fluid Mover Efficiency*

Air Flow Required to remove the heat is determined using the caloric equational

Fluid Mover Operating Point and Efficiency

Sizing the Fluid Mover & Work Required to Operate the Fluid Mover

Heat Flow from Chip to Ambient

First Order Thermal Resistance Model – Single Chip Carrier

Heat Pipes for High Heat Dissipating Chips & Compact Systems Design

Capillary Pressure generated must be greater than liquid pressure drop, vapor pressure drop and gravitational pressure drop

 $\Delta P_c \geq \Delta P_l + \Delta P_v + \Delta P_g$

Wick structure

HP PA 8000 Heat Pipe System, 1994

Heat Pipe Wick Structures

Challenge Faced by Small Single Core CPU Chip circa 2004 due to the concentrated heat source

Driving the Lamborghini on the Autobahn requires active micro-mechanical means – single phase, two phase

Inkjet Assisted Spray Cooling – Chip Level

phase change evaporative cooling – precision inkjet

- Avoid pooling, bubble formation
- Avoid Dryout

²⁷ Avoid Dryout **Exercise Server 2003 HP Labs 1997-2003, Best paper, Interpack 2003**

condensate

Summary of Cooling Solutions

To Learn More

- 1. Thermal Management of Electronic Systems and Packages, Patel and Bash
	- Graduate level course in thermal management
- 2. Google Scholar
	- search Patel Bash Beiltelmal Sharma Shah

A Parting Thought on Career Point-of-View, Passion, Pivot, Practice grounded in fundamentals of engineering

America, the land of Tinkerers, a childhood perspective

In the Valley of Tinkerers, as an early career Silicon Valley Contributor

With Bill Hewlett, Founder of HP, Inc in the Tinker Tank Interconnect and Thermal Sciences Laboratory

T-Shaped Cyber Physical Contributors

Success necessitates:

- 1. Depth in physical sciences
- 2. Breadth in multiple disciplines cyber sciences, economics, social sciences, art, history, culture
- 3. Learn-by-doing

References:

Patel and Baveja, "Rise of Cyber Physical Systems", National Academies of Engineering 2023; Patel, "Opening Doors to Opportunity", ASME Foudation, 2021

Thank You

Chip Backside (non I/O side) Thermal Interface Challenge

